

Автоматические балансировочные клапаны ASV

Описание и область применения

Балансировочные клапаны ASV используются для динамической гидравлической балансировки систем отопления и охлаждения.

Динамическая балансировка означает непрерывную балансировку нагрузки от 0 до 100 % путем регулировки давления в универсальных расходных системах. При частичных нагрузках, когда регулирующий клапан снижает расход, ограничение давления все равно осуществляется, и, таким образом, осуществляется динамическая балансировка. Благодаря использованию клапанов ASV вам не нужно применять сложные и занимающие много времени методы. Динамическая балансировка системы при всех нагрузках обеспечивает энергосбережение и повышает комфорт и управляемость климатической системы.

Ограничение расхода

Ограничение расхода обеспечивается путем совместного использования клапана ASV регулятора давления и регулируемого клапана абонентского пункта.

Ограничение расхода для каждого абонентского пункта предотвращает недостаточный расход на отдаленных пунктах и перерасход на остальных пунктах, таким образом, обеспечивая эффективность перекачки.

Пониженный уровень шума

Ограничение перепада давления предотвращает рост давления на регулирующем клапане при частичных нагрузках, таким образом, обеспечивая низкий уровень шума. (Именно поэтому стандарт DIN 18380 требует регулирования перепада давления частичной нагрузкой.)

Исключение необходимости балансировки

Ограничение расхода достигается путем регулирования каждого жидкостного контура по отдельности, не воздействуя на остальные, что в итоге требует проведения регулировки всего один раз. Не требуется никаких особых методов балансировки, поэтому можно сэкономить на затратах на пуско-наладку.

Авторитет регулирующего клапана

Регулирование перепада давления на регулирующем клапане подразумевает высокое значение авторитета –

что обеспечивает точное и стабильное регулирование, а также энергосбережение.

Зонная балансировка

Установка клапанов ASV позволяет разделить трубопроводную систему на независимые по давлению зоны. Это позволяет постепенно подключать зоны к магистральному трубопроводу в случае строительства нового здания или при реконструкции здания без использования дополнительных методов балансировки. Нет необходимости проводить пуско-наладку каждый раз, когда система изменяется, поскольку гидравлическая балансировка осуществляется автоматически.

Клапаны ASV-Р имеют фиксированную настройку (10 кПа). Параметры настройки могут быть увеличены до 20 или 30 кПа посредством замены пружины. Замена пружины может проводиться под давлением. Возможность увеличить настройку особенно полезна при устранении неисправностей. Она обеспечивает достижение расчетного расхода даже в случае, если расчеты не соответствуют текущей устаовке.

Клапаны ASV-PV могут быть настроены на различные диапазоны:

- Настройка от 5 до 25 кПа в большинстве случаев применяется для использования с радиатором,
- Настройка от 20 до 40 кПа применяется для использования с радиатором, установкой вентиляции, охлаждающей балкой и квартирным тепловым пунктом;
- Настройка от 35 до 75 кПа применяется для использования с квартирным тепловым пунктом и установкой вентиляции, охлаждающей балкой;
- Настройка от 60 до 100 кПа применяется для использования с крупными абонентскими пунктами (блоки кондиционирования воздуха, установки вентиляции и т.д.).

Используя клапаны ASV, можно оптимизировать напор насоса, при этом независящие от давления зоны позволяют поддерживать значение авторитета клапана абонентского пункта высоким.

Автоматические балансировочные клапаны ASV

Описание и область применения

(продолжение)

Балансировочные клапаны ASV спроектированы с целью обеспечения высокого качества автоматической балансировки благодаря:

- разгруженному по давлению конусу клапана;
- мембране, адаптированной для каждого диаметра клапана, которая обеспечивает постоянную высокую производительность для всех диаметров клапанов;
- пружине с линейной характеристикой, которая обеспечивает легкую настройку Др.

Угол 90° между всеми сервисными устройствами клапанов (шпиндель перекрытия потока, сливной кран, органы настройки, измерительные ниппели) обеспечивает легкость доступа в любых условиях монтажа.

Все вышеупомянутые особенности и функции реализуются в виде малогабаритных встраиваемых решений, так что установка клапанов ASV даже в стесненных условиях легко осуществима.

Клапаны ASV осуществляют регулирование давления не только в расчетных условиях (нагрузка 100 %), но также и при всех частичных нагрузках (таким образом, реализуя требование норм DIN 18380). Регулируя давление при частичной нагрузке, можно избежать проблем с шумом на термостатических радиаторных клапанах, которые часто возникают в несбалансированных системах.

Клапаны ASV (Ду 15-40) упаковываются в стиропор (пенополистирол), который может быть использован в качестве изоляции при температурах до 80 °C.

Изоляционная крышка доступна в качестве дополнительной принадлежности в целях изоляции при более высоких температурах (до 120 °C).

Клапаны ASV с Ду 15-40поставляются с внутренней и наружной резьбой, а клапаны с Ду 50 поставляются только с наружной резьбой. В случае выбора наружной резьбы в качестве дополнительной принадлежности может поставляться резьбовой или приварной ниппель. Клапаны диаметром Ду 65-100 имеют фланцевое соединение.

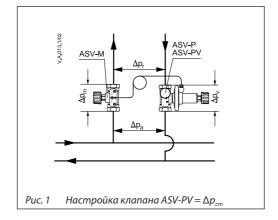
Балансировочные клапаны ASV имеют встроенные сервисные функции, такие как перекрытие потока и слив.

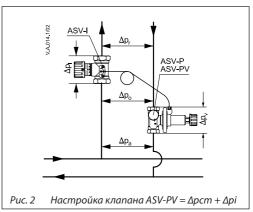
Клапаны ASV-PV могут оснащаться ниппелем для измерения расхода. В таком случае измерительные ниппели необходимо заказывать отдельно и устанавливать на клапан следующим образом:

- наверху сливного крана (Ду 15-50);
- на фланцевом соединении перед заполнением клапана водой (Ду 65-100).

Клапаны ASV-PV должны устанавливаться на обратном трубопроводе совместно с клапанами-партнерами, устанавливаемыми на подающем трубопроводе. , Клапан ASV-M/I/BD подходит в качестве клапанапартнера для диаметров от Ду 15 до Ду 50, а клапан MSV-F2 для диаметров от Ду 65 до Ду 100.

Существует две основные схемы использования клапанов-партнеров ASV (ASV-BD, ASV-I, ASV-M, MSV-F2):

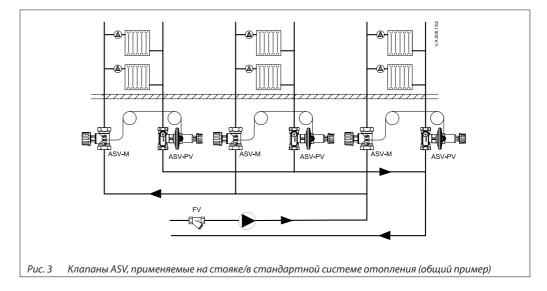

клапан-партнер вне регулирующего контура (Puc. 1).


Рекомендуемая схема: обеспечивается лучшая производительность, поскольку весь регулируемый диапазон давлений доступен для стояка. Ограничение расхода осуществляется на каждом абонентском пункте стояка (например, клапан RA-N с предварительной настройкой на радиаторе и т.д.).

От Ду 15 до Ду 50: ASV-М или ASV-BD От Ду 65 до Ду 100: MSV-F2, путем соединения импульсной трубки с измерительным ниппелем после клапана.

клапан-партнер в регулирующем контуре (Рис. 2). Ограничение расхода обеспечивается на стояке, при этом часть регулируемого давления используется при перепаде давления на клапанепартнере (Δp_i). Данный вариант предпочтителен, когда ограничение расхода на каждом абонентском пункте невозможно.

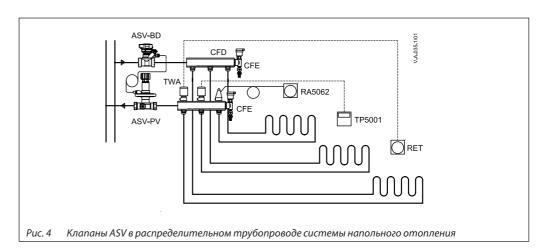
От Ду 15 до Ду 50: ASV-I или ASV-BD. От Ду 65 до Ду 100: MSV-F2, путем соединения импульсной трубки с измерительным ниппелем перед клапаном.


Клапан ASV-BD может использоваться вне регулирующего контура или в нем, в последнем случае измерительный ниппель открыт. Для использования вне регулирующего контура, синий измерительный ниппель должен быть открыт. В данном положении может осуществляться проверка расхода (положение по умолчанию). Для использования в регулирующем контуре, красный измерительный ниппель должен быть открыт. В данном положении может осуществляться проверка расхода.

VD.A6.E2.50 © Danfoss 06/2013 DEN-SMT/SI

Автоматические балансировочные клапаны ASV

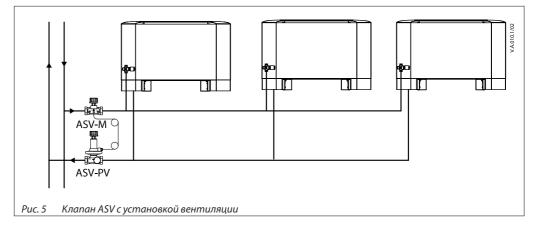
Описание и область применения


(продолжение)

Клапаны ASV должны использоваться в радиаторных системах отопления для регулировки перепада давления на стояках. Для ограничения расхода каждого радиатора термостатический радиаторный клапан с возможностью (функцией) предварительной настройки используется совместно с постоянным давлением, обеспечиваемым клапаном ASV, таким образом, обеспечивая сбалансированное распределение тепла.

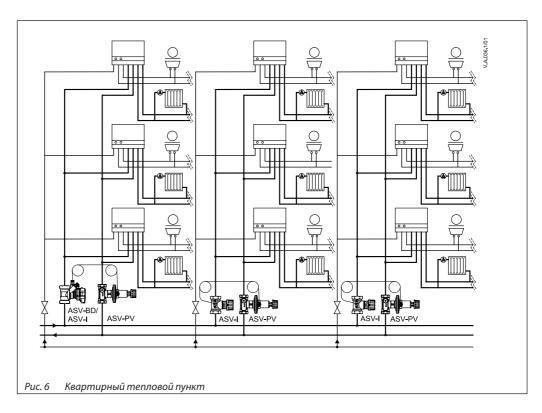
В ином случае расход на стояке может быть ограничен благодаря использованию функции настройки клапана ASV-I.

Регулирование перепада давления на стояке также подразумевает, что авторитет термостатических радиаторных клапанов высокий – что обеспечивает точное и стабильное регулирование, а также энергосбережение.


Клапаны ASV должны использоваться в системах напольного отопления. Для ограничения расхода каждого контура необходимо использовать клапаны со встроенным ограничением расхода или с функцией предварительной настройки совместно с постоянным давлением, обеспечиваемым клапаном ASV-PV. В ином случае расход всего распределительного трубопровода может быть ограничен благодаря использованию функции настройки клапана ASV-I или ASV-BD.

Клапаны ASV-PV могут регулировать перепад давления в нескольких диапазонах в случае потребности в перепаде давления. Благодаря небольшим размерам автоматические балансировочные клапаны ASV легко устанавливаются в настенный короб для распределительных трубопроводов напольного отопления.

Автоматические балансировочные клапаны ASV


Описание и область применения

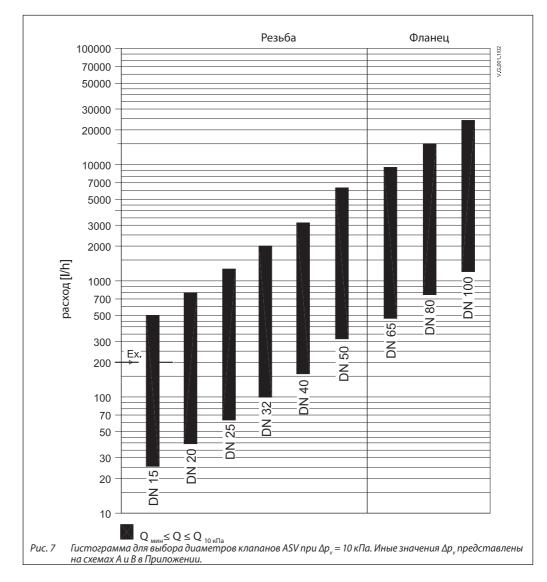
(продолжение)

Клапаны ASV должны использоваться в системах с установками вентиляции, индукционных устройствах и воздухонагревателях для автоматической гидравлической балансировки путем регулирования перепада давления в отводах или в каждом контуре. Постоянный перепад давления в сочетании с предварительно

настроенными регулирующими клапанами (ASV-I или ASV-BD) обеспечивает ограничение расхода.

Автоматические балансировочные клапаны ASV могут также иметь иную область применения. Например, клапаны ASV могут использоваться для предотвращения проблем с шумом на термостатических радиаторных клапанах в небольших системах путем регулирования перепада давления. Клапаны ASV могут использоваться для различных задач, когда необходим небольшой регулятор перепада давления, например, в небольших распределительных трубопроводах напольного отопления или в квартирных тепловых пунктах. В зданиях, оборудованных квартирными тепловыми пунктами, клапаны ASV могут использоваться для обеспечения надежной

автоматической балансировки путем регулирования перепада давления в стояках/зонах.


В квартирных тепловых пунктах режим давления меняется при нагреве бытовой воды по сравнению с ситуацией, когда необходимо только отопление. Благодаря использованию клапанов ASV-PV перепад давления регулируется также и в таких условиях.

Постоянный перепад давления в сочетании с предварительно настроенными регулирующими клапанами (ASV-I или ASV-BD) обеспечивает ограничение расхода.

4 **VD.A6.E2.50** © Danfoss 06/2013 Den-smt/si

Выбор диаметров клапанов

Мы рекомендуем осуществлять выбор диаметров клапанов ASV-P/PV, используя Рис. 7. Максимальные значения расхода основываются на перепаде давления 10 кПа на клапане, что обеспечивает эффективность перекачки и энергосбережение.

После выбора диаметров клапанов ASV-P/PV необходимо выбрать такие же диаметры для клапанов-партнеров ASV-BD / ASV-I / ASV-M / MSV-F2.

Пример:

Дано

Расход трубопровода 200 л/ч, трубы Ду 15

<u>Решение</u>:

Горизонтальная линия пересекает колонку по клапану Ду 15, который, таким образом, является клапаном нужного диаметра.

Подробные сведения о выборе диаметров клапанов смотри в примерах на страницах 12 и 13. Иное значение Δp_{ν} (перепад давления на клапане) представлено на схемах в Приложении A.

Связь между диаметром клапана и диаметром трубопровода

Значения К, на определенный диаметр были рассчитаны для покрытия диапазона расхода согласно VDI 2073 со скоростью потока воды до 0,8 м/с при перепаде давления на клапане 10 кПа. При скорости потока воды в трубопроводе от 0,3 до 0,8 м/с диаметр клапана должен быть равен диаметру трубопровода.

Данное правило основывается на том, что значение К, на определенный диаметр было рассчитано для соответствия диапазону значений расхода согласно VDI 2073 при перепаде давления на клапане 10 кПа.

Оформление заказа

Автоматичкеский балансировочный клапан **ASV-P** в комплекте с: импульсной трубкой длиной 1,5 м (G 1 /16 A) и дренажным краном (G 3 /4 A) Регулируемый постоянный перепад давлений (0,1 бар) 10 кПа; может увеличиваться до показателей настройки 20 или 30 кПА соответственно

Тип	Ду	k _{vs} (м³/ч)	Диаметр внутренней резьбы (ISO 7/1)	Код №	Тип	Диаметр наружной резьбы (ISO 228/1)	Код №
	15	1.6	R _p ½	003L7621		G ¾ A	003L7626
_	20	2.5	R _p 3/4	003L7622		G 1 A	003L7627
	25	4.0	R _p 1	003L7623		G 1¼ A	003L7628
	32	6.3	R _p 11/4	003L7624		G 1½ A	003L7629
	40	10	R _p 1½	003L7625		G 1¾ A	003L7630

Автоматический балансировочный клапан **ASV-PV** в комплекте с: импульсной трубкой длиной 1,5 м (G 1 / $_{16}$ A) и дренажным краном (G 3 / $_{4}$ A)

Тип	Ду	k _{vs} (м³/ч)	Соединен	ие	Диапазон настроек Δр (кПа)	Код№
	15	1.6		R _p ¹ / ₂		003L7601
	20	2.5		R _p ³ / ₄		003L7602
	25	4.0		R _p 1	5-25	003L7603
	32	6.3		R _p 11/4		003L7604
	40	10.0		R _p 1½		003L7605
	15	1.6	Внутренняя резьба	R _p 1/2		003L7611
	20	2.5	ISO 7/1	R _p ³ / ₄		003L7612
	25	4.0		R _p 1	20-40	003L7613
	32	6.3		R _p 11/4		003L7614
	40	10.0		R _p 1½		003L7615
	32	6.3		R _p 11/4	35-75	003L7616
	40	10.0		R _p 11/2	35-/5	003L7617
_	15	1.6		G 3/4 A		003L7606
│ ∰	20	2.5		G 1 A		003L7607
	25	4.0	Наружная резьба ISO 228/1	G 11/4 A	5-25	003L7608
	32	6.3	130 220/1	G 11/2 A		003L7609
	40	10.0		G 13/4 A		003L7610

Автоматический балансировочный клапан **ASV-PV** в комплекте с: импульсной трубкой длиной 2,5 м (G $^{1}/_{16}$ A), дренажным краном (G $^{3}/_{4}$ A) и адаптером **003L8151**

Тип	Ду	k _{vs} (м³/ч)	Соединен	ие	Диапазон настроек Δр (кПа)	Код №
H					5-25	003Z0611
		20	Наружная резьба	6.21/	20-40	003Z0621
	50	20	ISO 228/1	G 2 ½	35-75	003Z0631
					60-100	003Z0641

Автоматический балансировочный клапан **ASV-PV** в комплекте с: импульсной трубкой 2,5 м (G $^{1}/_{16}$ A) и адаптерами для больших диаметров ASV **003Z0691** и **003L8151**

Тип	Ду	k _{vs} (м³/ч)	Соединение	Диапазон настроек Δр (кПа)	Код №
	65	30			003Z0623
	80	48		20-40	003Z0624
	100	76.0			003Z0625
	65	30	_		003Z0633
	80	48	Фланец EN 1092-2	35-75	003Z0634
	100	76.0	LIV 1092 Z		003Z0635
	65	30			003Z0643
	80	48		60-100	003Z0644
	100	76.0			003Z0645

Ручной запорно-балансировочный клапан **ASV-BD**, в комплекте с двумя измерительными ниппелями и сливным краном

'				
Тип	Ду	k _{vs} (м³/ч)	Диаметр внутренней резьбы (ISO 7/1)	Код №
	15	3.0	R _p ½	003Z4041
	20	6.0	R _p 3/4	003Z4042
	25	9.5	R _p 1	003Z4043
R A	32	18	R _p 11/4	003Z4044
A TETA	40	26	R _p 1½	003Z4045
	50	40	R _p 2	003Z4046

6 **VD.A6.E2.50** © Danfoss 06/2013 Den-smt/si

Автоматические балансировочные клапаны ASV

Номенклатура и кодовые номера для оформления заказа (продолжение)

Запорный клапан **ASV-M**

Тип	Ду	k _{vs} (м³/ч)	Диаметр внутренней резьбы (ISO 7/1)	Код №	Тип	Диаметр наружной резьбы (ISO 228/1)	Код №
	15	1.6	R _p ½	003L7691		G ¾ A	003L7696
	20	2.5	R _p 3/4	003L7692		G 1 A	003L7697
<u> </u>	25	4.0	R _p 1	003L7693		G 1¼ A	003L7698
	32	6.3	R _p 11/4	003L7694		G 1½ A	003L7699
	40	10	R _p 1½	003L7695		G 1¾ A	003L7700
	50	16				G 2¼ A	003L7702

Ручной запорно-балансировочный клапан **ASV-I**, в комплекте в двумя измерительными ниппелями

Тип	Ду	k _{vs} (м³/ч)	Диаметр внутренней резьбы (ISO 7/1)	Код №	Тип	Диаметр наружной резьбы (ISO 228/1)	Код №
	15	1.6	R _p ½	003L7641		G ¾ A	003L7646
	20	2.5	R _p 3/4	003L7642		G 1 A	003L7647
	25	4.0	R _p 1	003L7643		G 1¼ A	003L7648
	32	6.3	R _p 11/4	003L7644		G 1½ A	003L7649
Harring H	40	10	R _p 1½	003L7645		G 1¾ A	003L7650
	50	16				G 2¼ A	003L7652

Запасные детали и дополнительные принадлежности

Описание		Примечания/соединение	Код№
		Ду 15	003L8155
D ACV.1(00000	Ду 20	003L8156
Рукоятка перекрытия потока для клапана ASV-I (черная)		Ду 25	003L8157
		Ду 32/Ду 40/Ду 50	003L8158
		Ду 15	003L8146
Рукоятка перекрытия потока для клапана ASV(черная)		Ду 20	003L8147
г укоятка перекрытия потока для клапана Азу(черная)	<u>n n 17 n n</u>	Ду 25	003L8148
		Ду 32/Ду 40/Ду 50	003L8149
Измерительный ниппель		Для дренажного крана	003L8143
Дренажный кран		Для клапана ASV-PV (Ду 15-50)	003L8141
Два измерительных ниппеля и предохранительная пластина		Для клапанов ASV-I и ASV-M, цангового типа	003L8145
измерительные ниппели 3 мм, 2 шт.		Для клапана ASV-BD 4)	003Z4662
Настроечная рукоятка		Для клапана ASV-BD 4)	003Z4652
	-010	1,5 м	003L8152
Импульсная трубка с уплотнительными кольцами	() _	2,5 м	003Z0690
		5 м	003L8153
Адаптер, для больших ASV ¹⁾		G ¼-R ¼; G ½16	003Z0691
Ниппель для подсоединения импульсной трубки ²⁾	Ħ	G 1/16-R 1/4	003L8151
Ниппель для подсоединения импульсной трубки к другим клапанам (американский стандарт)		G ¹ /16- ⁴ /16-20 UNF-2B	003L8176
Уплотнительное кольцо для импульсной трубки ³⁾		2,90 × 1,78	003L8175
Заглушка для подсоединения импульсной трубки ASV-I/M ³⁾		G 1/16 A	003L8174
		Ду 15	003L8182
Пружина на 20 кПа для клапанов ASV-P (желтая)		Ду 20	003L8183
пружина на 20 кна для клананов Аэх-г (желтая)		Ду 25	003L8184
		Ду 32/Ду 40	003L8185
		Ду 15	003L8192
Пружина на 30 кПа для клапанов ASV-P (зеленая)		Ду 20	003L8193
אין		Ду 25	003L8194
		Ду 32/Ду 40	003L8195

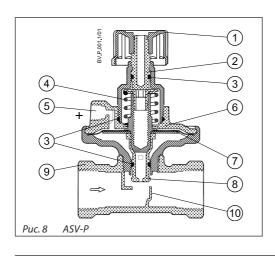
Рекомендовано для использования с MSV-F2; подключается к измерительному отверстию; позволяет

подключать импульсную трубку от ASV-PV, сохраняя при этом возможность измерения. Рекомендовано для использования с MSV-F2, позволяет подключать импульсную трубку от ASV-PV В ОТВЕРСТИЕ ВО ФЛАНЦЕ ВМЕСТО ИЗМЕРИТЕЛЬНОГО НИППЕЛЯ. Также может использоваться для подсоединения импульсной трубки непосредственно на трубопроводе.

Комплект из 10 штук.

Весь ассортимент дополнительных принадлежностей ASV-BD приведен в техническом описании Leno™ MSV-BD.

Автоматические балансировочные клапаны ASV


Техническое описание

Тип		ASV-	·I/M/P/PV	ASV-BD
Условный диаметр	Ду	15-40	50-100	15-50
Условное давление	6	16	(Py 16)	20
Испытательное давление	бар		25	30
Рекомендуемый перепад давлений на клапане	кПа	10-150 ¹⁾	10-250 ²⁾	10-250
Температура среды	°C	-20 120	-10 120	-20 120
Материалы деталей, контактирующі	их с вод	ой		
Корпус клапана		Латунь	Серый литейный чугун EN-GJL-250 (GG 25)	Латунь, стойкая к вымыванию цинка
Конус (ASV-P/PV)		Латунь, стойкая к вымыванию цинка	Нержавеющая сталь	
Запорный шар			-	Хромированная латунь
Мембрана и уплотнения			EPDM	
Пружина		Нержав	еющая сталь	-

¹⁾ Следует учесть, что максимально допустимый перепад давления на клапане 150 кПа также не должен превышаться при частичных нагрузках.

Устройство и принцип действия

- 1. Рукоятка перекрытия потока
- **2.** Шпиндель перекрытия потока
- 3. Уплотнительное кольцо
- 4. Настроечная пружина
- **5.** Соединение импульсной трубки
- **6.** Элемент диафрагмы
- 7. Регулирующая диафрагма
- **8.** Разгруженный по давлению конус клапана
- 9. Корпус клапана
- **10.** Седло

Клапан ASV-Р спроектирован таким образом, чтобы поддерживать постоянный перепад давления на стояке. Через внутреннее соединение и совместно с настроечной пружиной давление в обратном трубопроводе воздействует на нижнюю поверхность регулирующей диафрагмы (7), в то время как через импульсную трубку (5) давление на подающем трубопроводе воздействует на верхнюю поверхность диафрагмы. Таким образом, балансировочный клапан поддерживает фиксированный перепад давления 10 кПа.

Параметры настройки могут быть увеличены до 20 или 30 кПа посредством замены пружины. Замена пружины может проводиться под давлением. Возможность увеличить настройку особенно полезна при устранении неисправностей. Она обеспечивает достижение расчетного расхода даже в случае, если расчеты не соответствуют текущей устаовке.

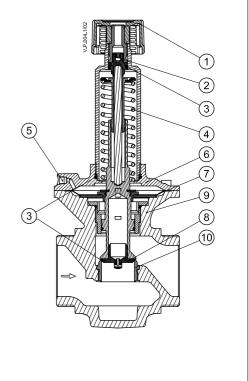
- 1. Рукоятка перекрытия потока
- **2.** Перепад давления настроечный шпиндель
- 3. Уплотнительное кольцо
- 4. Настроечная пружина
- **5.** Соединение импульсной трубки
- 6. Элемент диафрагмы
- 7. Регулирующая диафрагма
- **8.** Разгруженный по давлению конус клапана
- **9.** Корпус клапана
- **10.** Седло

Кол-во	5-25	20-40	35-75
оборотов шпинделя	(кПа)	(кПа)	(кПа) ¹⁾
0	25	40	75
1	24	39	73
2	23	38	71
3	22	37	69
4	21	36	67
5	20	35	65
6	19	34	63
7	18	33	61
8	17	32	59
9	16	31	57
10	15	30	55
11	14	29	53
12	13	28	51
13	12	27	49
14	11	26	47
15	10	25	45
16	9	24	43
17	8	23	41
18	7	22	39
19	6	21	37
20	5	20	35

Puc. 9	ASV-PV (Ду 1.	5-40)

		Заводская настройка	
		Диапазон настроек ∆р (кПа)	кПа
15	2,5	5-25	10
20	3	20-40	30
Ду 25	4	35-75	60
32	5		
40	5 3 9	¹⁾ Только Ду 32/40	(1) (2) (3) (4) (6) (7) (8) (10)

8 **VD.A6.E2.50** © Danfoss 06/2013 Den-smt/51


²⁾ Следует учесть, что максимально допустимый перепад давления на клапане 250 кПа также не должен превышаться при частичных нагрузках.

Автоматические балансировочные клапаны ASV

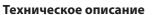
Устройство и принцип действия (продолжение)

- **1.** Рукоятка перекрытия потока
- **2.** Шпиндель настройки перепада давления
- 3. Уплотнительное кольцо
- 4. Настроечная пружина
- **5.** Соединение импульсной трубки
- 6. Элемент диафрагмы
- 7. Регулирующая диафрагма
- **8.** Разгруженный по давлению конус клапана
- **9.** Корпус клапана
- 10. Седло

Кол-во оборотов шпинделя	5-25 (κΠa)	20-40 (кПа)	35-75 (κΠa)	60-100 (кПа)
0	25	40	75	100
1	24	39	73	98
2	23	38	71	96
3	22	37	69	94
4	21	36	67	92
5	20	35	65	90
6	19	34	63	88
7	18	33	61	86
8	17	32	59	84
9	16	31	57	82
10	15	30	55	80
11	14	29	53	78
12	13	28	51	76
13	12	27	49	74
14	11	26	47	72
15	10	25	45	70
16	9	24	43	68
17	8	23	41	66
18	7	22	39	64
19	6	21	37	62
20	5	20	35	60

Заводская настройка

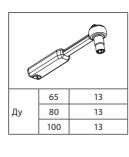
	Sacockan mach	npound
	Диапазон настроек Δр (кПа)	кПа
	5-25	10
	20-40	30
	35-75	60
	60-100	80
Pu	c. 10 ASV-PV (Ду 50	D)

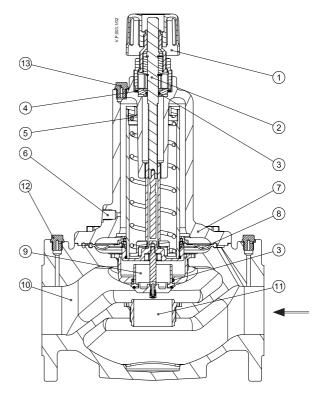


Клапан ASV-PV спроектирован для поддержания постоянного заданного перепада давления. Через внутреннее соединение и совместно с настроечной пружиной (4) давление в обратном трубопроводе воздействует на нижнюю поверхность регулирующей диафрагмы (7), в то время как через импульсную трубку (5) давление на подающем трубопроводе воздействует на верхнюю поверхность диафрагмы. Таким образом, балансировочный клапан поддерживает отрегулированный перепад давления.

Клапаны ASV-PV продаются с четырьмя различными диапазонами настройки Δр. Клапаны имеют заводскую настройку на определенное значение, как описано в таблице заводских настроек на Рис. 9, 10 и 11.

Для установки необходимого перепада давления применяйте следующую последовательность: настройка ASV-PV может быть изменена посредством поворота настроечного шпинделя (2). Вращение шпинделя по часовой стрелке увеличивает регулируемую разность давлений, а вращение против часовой стрелки уменьшает.


Если настройка клапана в данный момент не известна, то следует сначала полностью завернуть шпиндель по часовой стрелке. При этом положении шпинделя клапан ASV-PV будет настроен на максимальное значение. Затем шпиндель необходимо отвернуть на (n) оборотов до достижения требуемого значения перепада давления, как показано на Рис. 9, 10 или 11.



Автоматические балансировочные клапаны ASV

Устройство и принцип действия (продолжение)

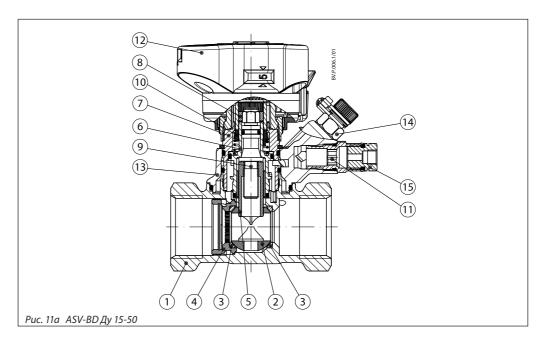
- 1. Рукоятка перекрытия потока
- 2. Шпиндель настройки перепада давления
- 3. Уплотнительное кольцо
- 4. Плоская прокладка
- 5. Настроечная пружина
- 6. Соединение импульсной трубки
- **7.** Элемент диафрагмы
- 8. Регулирующая диафрагма9. Разгруженный по давлению конус клапана
- 10. Корпус клапана
- **11.** Седло
- 12. Измерительные отверстия -. заглушенные
- **13.** Воздушный клапан

Заводская настройка

Диапазон настроек Др (кПа)	кПа
20-40	30
35-75	60
60-100	80

Кол-во	20-40	35-75	60-100
оборотов шпинделя	(кПа)	(кПа)	(кПа)
0	40	75	100
1	39	74	99
2	38	73	98
3	37	72	97
4	36	71	96
5	35	70	95
6	34	69	94
7	33	68	93
8	32	67	92
9	31	66	91
10	30	65	90
11	29	64	89
12	28	63	88
13	27	62	87
14	26	61	86
15	25	60	85
16	24	59	84
17	23	58	83
18	22	57	82
19	21	56	81
20	20	55	80

Кол-во	20-40	35-75	60-100
оборотов шпинделя	(кПа)	(кПа)	(кПа)
21		54	79
22		53	78
23		52	77
24		51	76
25		50	75
26		49	74
27		48	73
28		47	72
29		46	71
30		45	70
31		44	69
32		43	68
33		42	67
34		41	66
35		40	65
36		39	64
37		38	63
38		37	62
39		36	61
40		35	60


Puc. 11 ASV-PV (Ду 65-100)

10 **VD.A6.E2.50** © Danfoss 06/2013 DEN-SMT/SI

Автоматические балансировочные клапаны ASV

Устройство и принцип действия (продолжение)

- 1. Корпус клапана
- **2.** Шар
- 3. Уплотнение шарового клапана
- Зажимной винт
- 5. Втулка настроечного штока
- 6. Уплотнительная втулка
- 7. Верхняя часть клапана
- 8. Настроечный винт
- 9. Шток
- 10. Блокиратор настройки
- 11. Сливной кран
- **12.** Ручка
- 13. Вращающаяся измерительная станция
- 14. Измерительный ниппель
- 15. Соединение импульсной трубки

Клапаны-партнеры ASV-BD/I/M должны использоваться совместно с автоматическими клапанами ASV-PV/Р для регулирования перепада давления на стояках.

Клапан ASV-BD сочетает в себе возможности регулировочного клапана и отсечного клапана, а также имеет ряд уникальных особенностей:

- высокие значения kv для обеспечения небольших потерь давления;
- положение клапана-партнера внутри регулирующего контура или вне его (более подробные сведения приведены на странице 2), которое можно выбирать даже после установки клапана и подачи давления на него;
- цифровая шкала на рукоятке, позволяет увидеть настройку практически с любой стороны;
- простая блокировка настройки;
- вращающаяся измерительная станция со встроенными измерительными ниппелями с измерительными иглами 3 мм;
- имеет встроенный дренажный кран, позволяющий осуществлять слив с обеих сторон от клапана:
- рукоятка может сниматься, на случай монтажа в стесненных условиях:
- рукоятка имеет цветной индикатор, показывающий положение клапана открыт/закрыт.

Соединение импульсной трубки

Импульсная линия должна быть соединена с соединительной деталью импульсной трубки (15). В рабочем положении один из измерительных ниппелей должен быть открыт, при этом второй должен быть закрыт. Существует две возможные схемы: с клапаном-партнером внутри регулирующего контура или вне его. Схема может быть выбрана с помощью соединительной детали импульсной трубки:

- Клапан-партнер вне регулирующего контура: открытый выходной измерительный ниппель (синяя маркировка). Клапан ASV-BD должен быть выставлен на максимальное значение (полностью открыт). Проверка расхода возможна.
- Клапан-партнер в регулирующем контуре: открытый входной измерительный ниппель (красная маркировка). Ограничение расхода с проверкой расхода возможно.

Примечание:

-Положением по умолчанию является открытое положение входного измерительного ниппеля (синяя маркировка).

Ограничение расхода

Используйте следующую последовательность действий:

- Когда клапан открыт, блокиратор разомкнут. Можно также использовать шестигранный ключ.
- Рукоятка поднимется, и необходимое значение расхода может быть установлено.
- Заблокируйте настройку, нажимая на рукоятку до ее защелкивания.
- При необходимости расход может быть измерен с помощью прибора PFM 4000 или измерительных приборов других производителей.

Проверка расхода (в случае с клапаном ASV-BD осуществляется вне регулирующего контура)

Используйте следующую последовательность

- Настройка клапана ASV-BD выставлена на максимальное значение.
- Расход может быть измерен с помощью прибора PFM 4000 или измерительных приборов других производителей.
- Если перепад давления на клапане слишком низкий для обеспечения надежного измерения расхода, необходимо установить клапан ASV-BD на более низкое значение с целью обеспечения достаточно высокого перепада давления на клапане.
- 4. После измерения расхода установите обратно максимальное значение и заблокируйте его путем нажатия на ручку до ее защелкивания.

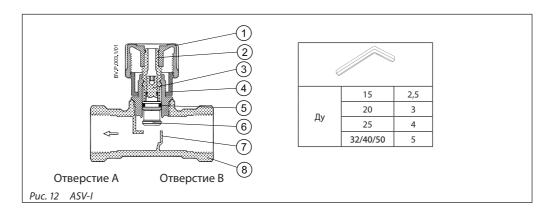
Слив

Используйте следующую последовательность действий:

- 1. Закройте открытый измерительный ниппель.
- Снимите импульсную трубку.
- Снимите адаптер. Убедитесь в том, что сливной кран зафиксирован гаечным ключом после демонтажа адаптера.
- Синий ниппель открывает выходное отверстие, а красный измерительный ниппель открывает входное отверстие. Не применяйте более 3 поворотов. Сливной кран и ниппели могут поворачиваться в любое положение.

Примечание:

при сливе всегда поддерживайте одинаковое или более высокое статическое давление на верхней части мембраны ASV-P/PV. Для этого всегда осуществляйте слив из обратного трубопровода в первую очередь, а импульсную трубку следует демонтировать только после опорожнения обратного трубопровода. Если слив осуществляется сначала из подающего трубопровода, мембрана может быть повреждена.


VD.A6.E2.50 © Danfoss 06/2013 DEN-SMT/SI 11

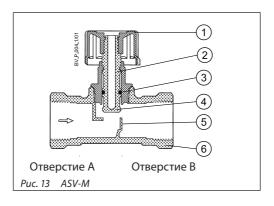
Автоматические балансировочные клапаны ASV

Устройство и принцип действия (продолжение)

- **1.** Рукоятка перекрытия потока
- **2.** Шпиндель перекрытия потока
- 3. Настроечный шпиндель
- 4. Диск со шкалой
- 5. Кольцевые уплотнения
- 6. Конус клапана
- **7.** Седло
- 8. Корпус клапана

Клапан ASV-I включает в себя двойной конус, обеспечивающий максимальное ограничение хода клапана, что обеспечивает ограничение расхода. Он также включает в себя функцию перекрытия потока. Клапан ASV-I оснащен ниппелями для измерения расхода и соединением для импульсной трубки ASV-P/ASV-PV.

Для ограничения расхода сделайте следующее: поверните рукоятку клапана против часовой стрелки на полный оборот для открытия клапана. Маркировка на рукоятке встанет напротив »0« на шкале. Поверните рукоятку клапана по часовой стрелке до нужного значения настройки (например, для настройки 2.2 рукоятку необходимо провернуть на два полных оборота, а затем вперед до значения »2« на шкале. Удерживайте рукоятку, чтобы выставить настройку (например, 2.2), и с помощью шестигранного торцового ключа

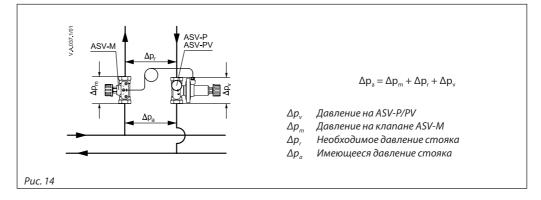

проверните шпиндель против часовой стрелки на полный оборот (пока не почувствуете, что дошли до упора). Поверните рукоятку клапана против часовой стрелки на полный оборот таким образом, чтобы маркировка на рукоятке встала напротив »0« на шкале.

Теперь клапан открыт на то количество оборотов от закрытого положения (2.2), которое обозначено при пересчете из необходимого расхода. Для отмены данной настройки поверните шестигранный торцовый ключ по часовой стрелке на полный оборот (пока не почувствуете, что дошли до упора).

При этом удерживайте рукоятку на значении 0«.

Для считывания значения настройки клапан должен быть закрыт.

- **1.** Рукоятка перекрытия потока
- Шпиндель перекрытия потока
- 3. Кольцевые уплотнения
- 4. Конус клапана
- **5.** Седло
- 6. Корпус клапана



Клапан ASV-М спроектирован для перекрытия расхода в трубопроводе. Клапан ASV-М имеет соединение для импульсной трубки на ASV-P/ASV-PV. Он может быть оснащен ниппелями для измерения расхода (которые продаются отдельно как дополнительные принадлежности).

12 **VD.A6.E2.50** © Danfoss 06/2013 Den-smt/Si

Примеры выбора диаметров клапанов

1. Пример

<u>Дано</u>:

Необходимо:

- Тип клапана;
- Диаметр клапана.

Клапан ASV-М был выбран, поскольку радиаторные клапаны имеют функцию предварительной настройки.

Клапан ASV-PV был выбран, поскольку необходимый перепад давления на стояке составляет 20 кПа.

Клапан ASV-PV должен регулировать давление 20 кПа на стояке, что означает, что 50 кПа из 70-ти будет распределяться между двумя клапанами.

$$\Delta p_v + \Delta p_m = \Delta p_a - \Delta p_r = 70 - 20 = 50$$
 кПа

Мы считаем, что диаметр Ду 25 является подходящим в данном случае (необходимо учитывать, что оба клапана должны быть одного диаметра). Поскольку клапан ASV-M Ду 25 должен быть полностью открыт, перепад давления рассчитывается по следующей формуле:

$$\Delta p_{m} = \left(\frac{Q}{Kv}\right)^{2} = \left(\frac{1.5}{4.0}\right)^{2} = 0.14bar = 14 kPa$$

или по схеме в **Приложении A, рис. Е** следующим образом:

Проведите горизонтальную линию от 1,5 м³/ч (~1500 л/ч) через линию, которая обозначает Ду 25. От пересечения этих линий проведите вертикальную линию, до значения перепада давления 14 кПа.

Таким образом, перепад давления на клапане ASV-PV составляет:

$$\Delta p_v = (\Delta p_a - \Delta p_r) - \Delta p_m = 50$$
 κΠα -14 κΠα $= 36$ κΠα

как можно увидеть на схеме в **Приложении А, Рис. А**.

2. Пример

Изменение значения расхода настройкой перепада давления.

<u>Дано:</u>

Необходимо:

Новая настройка клапана для увеличения расхода на 10 %, $Q_2 = 1650 \, \text{п/ч}$.

Настройка клапана ASV-PV:

Когда необходимая настройка регулирующего давления может быть установлена на определенное значение (ASV-PV от 5 до 25 кПа или от 20 до 40 кПа). Благодаря увеличению/уменьшению значения настройки можно регулировать расход через стояк, абонентский пункт или сходным образом. (увеличение регулирующего давления на 100 % приведет к увеличению расхода на 41 %)

$$p_2 = p_1 \times \left(\frac{Q_2}{Q_1}\right)^2 = 0.20 \times \left(\frac{1650}{1500}\right)^2 = 24kPa$$

При увеличении значения настройки до $24 \, \text{кПa}$ расход увеличится на $10 \, \%$ до $1650 \, \text{л/ч}$.

Примеры выбора диаметров клапанов (продолжение)

ASV-P ASV-PV Δp_c Δp $\Delta p_a = \Delta p_i + \Delta p_r + \Delta p_v$

 $\Delta p_{_{V}}$ Перепад давления на клапане ASV-PV

Δр, Перепад давления на клапане ASV-I

 Δp_{o} Перепад давления на стояке, включая ASV-I

Δр_a Имеющееся давление стояка

Δр Перепад давления на стояке без ASV-I

Puc. 15

3. Пример

Ограничение расхода с помощью клапана ASV-I

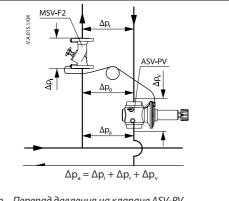
Необходимый расход отвода (Q):..... 880 л/ч ASV-PV и ASV-I (Ду 25) Настройка клапана ASV-PV (Δp_o) Расчетный перепад давления на стояке при необходимом расходе (Др.) 4 кПа

Необходимо:

Настройка клапана ASV-I для получения необходимого расхода

Решение:

Когда необходимая настройка клапана ASV-I может быть установлена для реализации функции ограничения расхода. Клапан ASV-I находится внутри регулирующего контура регулятора давления, поэтому настройка ASVI будет настройкой ограничения расхода. (общее правило заключается в том, что увеличение значения kv на 100 % приведет к увеличению расхода на 100 %)


$$k_v = \frac{Q}{\sqrt{\Delta p_v}} = \frac{0.880}{\sqrt{0.06}} = 3.6 \text{m}^3 / \text{h}$$

Результат приведен на схеме в Приложении А, Рис. D.

При необходимом расходе перепад давления на всем отводе составляет 4 кПа. Без использования ASV-I расход на отводе при полностью открытом регулирующем клапане будет на 58 % выше, что приведет к перерасходу (при 4 кПа допускается 880 л/ч, а при 10 кПа допускается 1390 л/ч). С настройкой ASV-I Ду 25 на значение 90 % k, (3,6 м³/ч) при необходимости мы ограничим расход до 880 л/ч. Данное значение получено с помощью

следующего расчета:

$$\Delta p_i = \Delta p_o - \Delta p_r = 10 - 4 = 6$$
 κΠα.

 $\Delta p_{_{V}}$ Перепад давления на клапане ASV-PV

Δp, Перепад давления на клапане MSV-F2

Δp₀ Перепад давления на стояке, включая MSV-F2

 Δp_a Перепад давления на стояке

Δр. Перепад давления на стояке без MSV-F2

Puc. 16

4. Пример

Область применения квартирного теплового пункта

Дано:

Кол-во квартирных тепловых пунктов,
подсоединенных к одному стояку5
Тепловая мощность каждого теплового
пункта15 кВт
Нагрев бытовой воды на каждом тепловом
пункте35 кВт
Коэффициент одновременной работы
(источник - университет TU Dresden) 0,407
Необходимый расход отвода (Q): 6400 л/ч
Минимальное имеющееся давление
данного стояка (Др _а) 80 кПа
Расчетный перепад давления на стояке
при необходимом расходе (Др.)50 кПа

<u>Необходимо</u>:

- Тип клапана;
- Диаметр клапана.

Для расчета максимального расхода на стояке, используется коэффициент одновременной работы, поскольку потребление бытовой воды является временным и не происходит одновременно во всех квартирах. Поскольку расход воды через теплообменник при нагреве бытовой воды не регулируется, максимальный расход также должен быть ограничен.

Поскольку необходимый перепад давления на стояке составляет 50 кПа, выбран клапан ASV-PV с диапазоном от 0,35 до 0,75 бар (от 35 до 75 кПа).

Поскольку на стояке имеется 80 кПа, то $\Delta p_{_{V}}$ составит 30 кПа.

$$\Delta p_v = \Delta p_a - \Delta p_o = 80 - 50 = 30$$
 кПа

$$k_v = \frac{Q}{\sqrt{\Delta p_v}} = \frac{6.4}{\sqrt{0.3}} = 11.7 \text{m}^3/\text{h}$$

Для 6400 л/ч выбран клапан диаметром Ду 50 согласно вышеприведенным расчетам или на основании приведенного на схеме в Приложении А, рис. В. При необходимости уменьшения расхода через стояк необходимо использовать клапан ASV-I или MSV-F2.

Автоматические балансировочные клапаны ASV

Измерение расхода и перепада давления

Клапаны ASV-BD (игольчатого типа) и ASV-I (цангового типа) оснащены двумя измерительными ниппелями с тем, чтобы перепад давления на клапане можно было измерять, используя измерительное оборудование компании Danfoss либо любое другое измерительное устройство. Используя график перепада давления для ASV-BD (Приложение A, рис. C) или ASV-I (Приложение A, рис. D), можно преобразовать фактический перепад давления на клапане в фактический расход.

Для измерительных ниппелей цангового типа: после соединения быстроразъемных соединений измерительного оборудования можно открывать измерительные ниппели путем поворота против часовой стрелки на пол оборота с помощью 8 мм двустороннего гаечного ключа. После проведения измерений ниппели должны быть снова закрыты путем

поворота обратно по часовой стрелке и отсоединения быстроразъемных соединений.

Примечание: При измерении расчетного расхода все радиаторные клапаны должны быть полностью открыты (номинальный расход).

Измерение перепада давления (Δp_r) на стояке.

Установите измерительный соединитель (Код Danfoss № 003L8143) на сливной кран балансировочного клапана ASV-P/PV (Ду 15-50) или резьбовое соединение как можно ближе к абонентскому пункту. Измерение должно проводиться между измерительным ниппелем у отверстия В клапана ASV-BD/ASV-I/ ASV-M/MSV-F2 и измерительным соединителем на клапане ASV-P/PV.

Монтаж

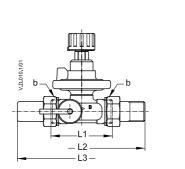
Клапан ASV-P, ASV-PV должен устанавливаться на обратный трубопровод с тем, чтобы направление потока совпадало с направлением стрелки на корпусе клапана. Клапаны-партнеры (ASV-M/I/BD, MSV--F2 должны устанавливаться на напорной трубе таким образом, чтобы направление потока совпадало с направлением стрелки на корпусе клапана. Импульсная трубка должна устанавливаться между клапаномпартнером и ASV-P/PV.

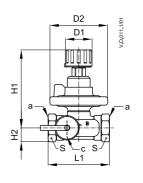
Импульсная трубка должна быть промыта перед установкой. Кроме того, должны быть установлены клапаны ASV-PV и ASV-I/BD, как определено в условиях монтажа.

Гидравлические испытания

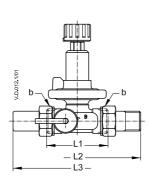
Макс. испытательное давление25 бар

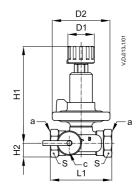
При проведении гидравлических испытаний системы обе стороны регулирующей мембраны должна быть под одинаковым статическим давлением во избежание повреждения регулятора давления. Это означает, что к регулятору должна быть присоединена импульсная трубка, а все игольчатые вентили должны быть открыты.


Если клапан ASV-P/PV Ду 15-50 установлен совместно с клапаном ASV-M, то оба клапана должны быть в полностью открытом или полностью закрытом положении (оба клапаны должны быть в одном и том же положении!) Если клапан ASVP/PV Ду 15-50 установлен совместно с клапаном ASV-I /ASV-BD, то оба клапаны должны быть открыты. При выполнении данной процедуры (закрытие или открытие клапанов) убедитесь в том, что на верхней поверхности мембраны нет более низкого давления во избежание ее повреждения.


Начало работы

При пуске системы – при открытии подачи потока на клапане ASV-PV и клапане-партнере убедитесь в наличии с обеих сторон мембраны одинакового статического давления или более высокого давления на верхней поверхности мембраны. Если заполнение осуществляется путем открытия клапана ASV-PV и клапана-партнера, убедитесь в наличии давления на верхней поверхности мембраны путем открытия клапана-партнера перед открытием клапана ASV-PV.


Габаритные размеры



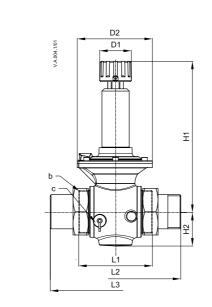
ASV-P

п.,	L1	L2	L3	H1	H2	D1	D2	S	a	b	c
Ду			мм			ISO 7/1	ISO 2	228/1			
15	65	120	139	82	15	28	61	27	Rp ½	G ¾ A	
20	75	136	159	103	18	35	76	32	Rp ¾	G 1 A	
25	85	155	169	132	23	45	98	41	Rp 1	G 1¼ A	G ¾ A
32	95	172	179	165	29	55	122	50	Rp 11/4	G 1½ A	
40	100	206	184	170	31	55	122	55	Rp 1½	G 1¾ A	

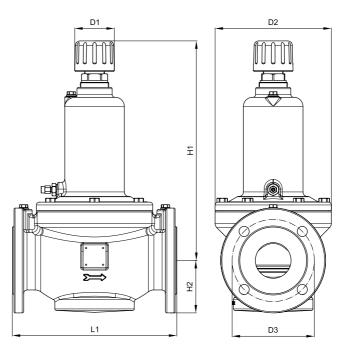
ASV-PV

770 1	•										
п.,	L1	L2	L3	H1	H2	D1	D2	S	a	b	с
Ду		MM							ISO 7/1 ISO 22		228/1
15	65	120	139	102	15	28	61	27	Rp ⅓	G ¾ A	
20	75	136	159	128	18	35	76	32	Rp 3/4	G 1 A	
25	85	155	169	163	23	45	98	41	Rp 1	G 1¼ A	
32	95	172	179	204 245 ¹⁾	29	55	122	50	Rp 1¼	G 1½ A	G ¾ A
40	100	206	184	209 250 ¹⁾	31	55	122	55	Rp 1½	G 1¾ A	

¹⁾ Диапазон настроек 35-75 кПа


Puc. 17

16 **VD.A6.E2.50** © Danfoss 06/2013 DEN-SMT/SI

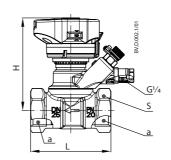

Габаритные размеры (продолжение)

Техническое описание

ASV-PV

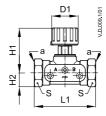
Ду	Диапазон настроек Δ р	L1	L2	L3	H1	H2	D1	D2	b	с
	кПа				MM				ISO	228/1
	5-25				232					
	20-40	120	244	234			122	C 21/	C 2/ A	
50	35-75	130			272	61	55	133	G 21/2	G 3/4 A
	60-10				273					

ASV-PV

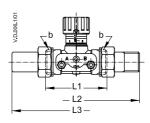

_	L1	H1	H2	D1	D2	D3			
Ду		ММ							
65	290	385	93	68	205	145			
80	310	390	100	68	218	160			
100	347	446	112	68	248	180			

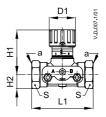
Puc. 18

VD.A6.E2.50 © Danfoss 06/2013 17 DEN-SMT/SI


Габаритные размеры (продолжение)

ASV-BD

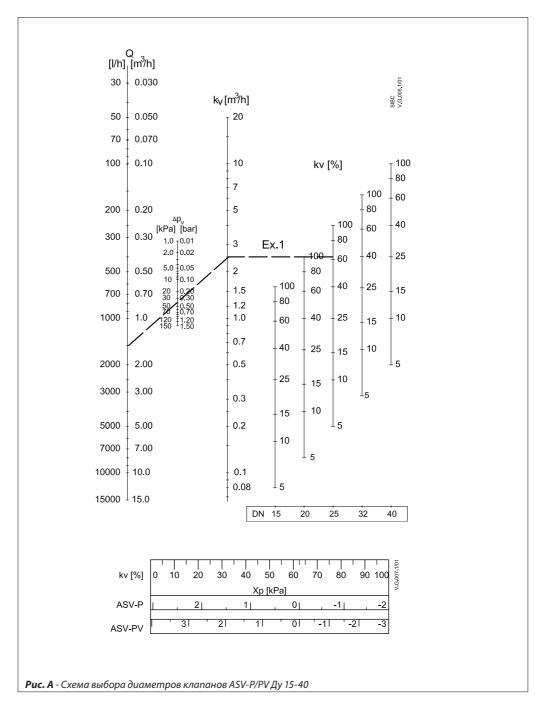

п.,	L	Н	S	a
Ду		ISO 228/1		
15	65	92	27	G 1/2
20	75	95	32	G ¾
25	85	98	41	G 1
32	95	121	50	G 1¼
40	100	125	55	G 1½
50	130	129	67	G 2



ASV-M

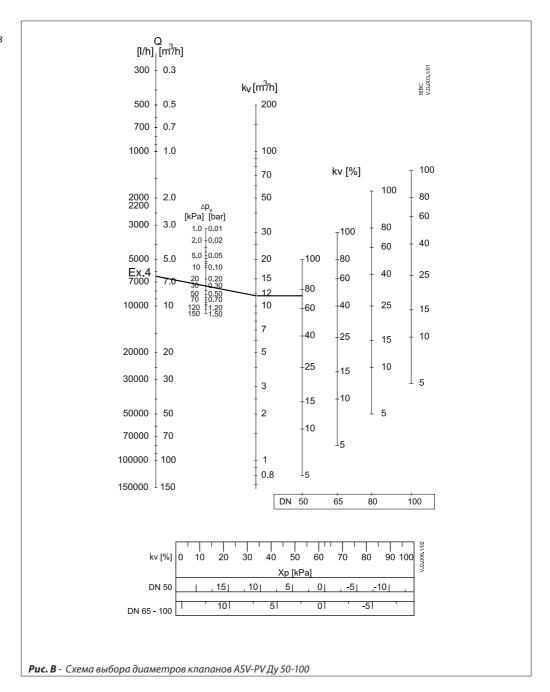
п.,	L1	L2	L3	H1	H2	D1	S	a	b
Ду				ММ			ISO 7/1	ISO 228/1	
15	65	120	139	48	15	28	27	Rp 1/2	G ¾ A
20	75	136	159	60	18	35	32	Rp ¾	G1A
25	85	155	169	75	23	45	41	Rp 1	G 1¼ A
32	95	172	179	95	29	55	50	Rp 1¼	G 1½ A
40	100	206	184	100	31	55	55	Rp 1½	G 1¾ A
50	130	246	214	106	38	55	67	-	G 21/4 A

ASV-I


Пъг	L1	L2	L3	H1	H2	D1	S	a	b
Ду	ММ				ISO 7/1	ISO 228/1			
15	65	120	139	48	15	28	27	Rp ½	G ¾ A
20	75	136	159	60	18	35	32	Rp ¾	G1A
25	85	155	169	75	23	45	41	Rp 1	G 1¼ A
32	95	172	179	95	29	55	50	Rp 1¼	G 1½ A
40	100	206	184	100	31	55	55	Rp 1½	G 1¾ A
50	130	246	214	106	38	55	67	-	G 2¼ A

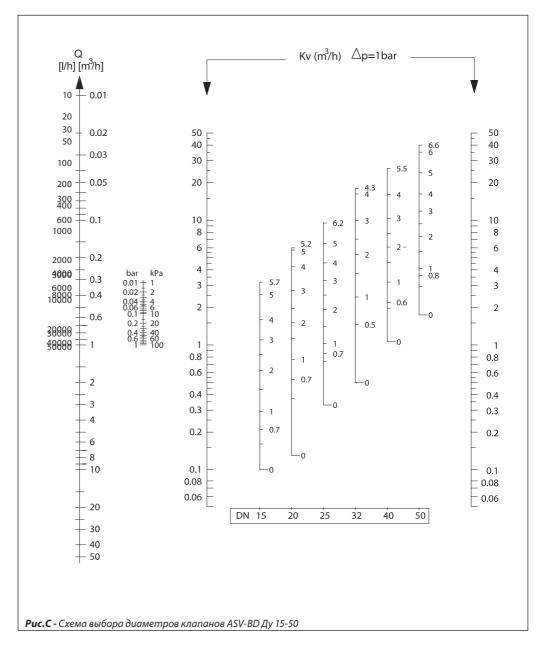
Puc. 19

18 **VD.A6.E2.50** © Danfoss 06/2013 DEN-SMT/SI

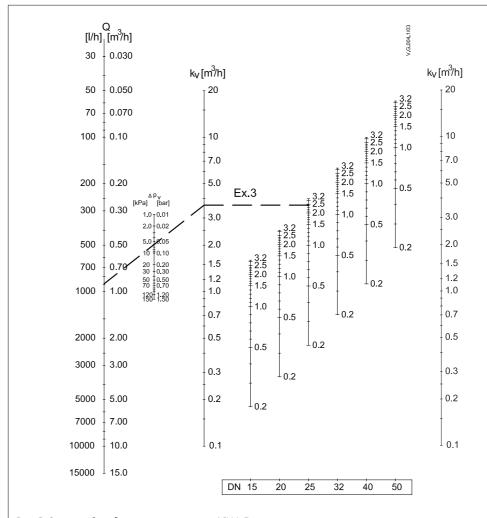


Приложение А-Схема выбора диаметров клапанов

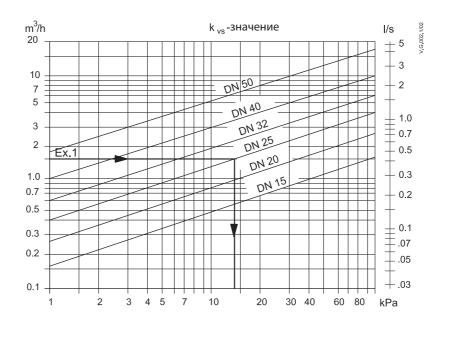
Автоматические балансировочные клапаны ASV


Приложение А-Схема выбора диаметров клапанов

20 **VD.A6.E2.50** © Danfoss 06/2013 DEN-SMT/SI

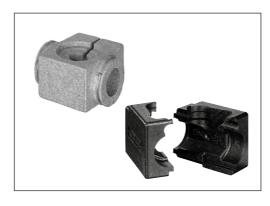

Автоматические балансировочные клапаны ASV

Приложение А-Схема выбора диаметров клапанов



Приложение А

Рис. D_Схема выбора диаметров клапанов ASV-I, Ду 15-50


Рис. Е - Перепад давления на клапанах ASV-M, Ду 15-50

22 VD.A6.E2.50 © Danfoss 06/2013 DEN-SMT/SI

Изоляция, фитинги

Описание

Теплоизоляция

Упаковка из стиропора (пенополистирола), в которой транспортируется клапан, может быть использована в качестве его теплоизоляции в системах, в которых температура не превышает 80 °C в режиме постоянной эксплуатации.

Клапан ASV-BD поставляется совместно с изоляционной крышкой из пенополипропилена. Изоляционная крышка клапана ASV-BD имеет функцию защелкивания для быстрой и простой установки на клапан. Изоляционная крышка из пенополипропилена предназначена для использования при более высоких температурах до 120 °C.

Оба материала (пенополистирол и пенополипропилен) одобрены в соответствии со стандартом пожарной безопасности В2, DIN 4102.

Фитинги

В качестве дополнительных принадлежностей для клапанов с наружной резьбой компания Danfoss предлагает резьбовые и приварные фитинги.

Материалы	
Гайка	латунь
Приварной фитинг	сталь
Резьбовой фитинг	латунь

Номенклатура и кодовые номера для оформления заказа

Изоляционная крышка из пенополипропилена для клапана ASV

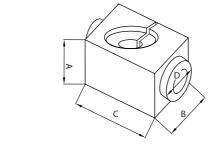
Соединение	Код №
DN 15	003L8170
DN 20	003L8171
DN 25	003L8172
DN 32	003L8173
DN 40	003L8139

Изоляционная крышка из пенополипропилена для клапана ASV-BD

Соединение	Код №
DN 15	003Z4781
DN 20	003Z4782
DN 25	003Z4783
DN 32	003Z4784
DN 40	003Z4785
DN 50	003Z4786

Фитинги

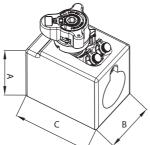
Тип	Примечания	к трубопроводу	к клапану	Код №
		R 1/2	DN 15	003Z0232
	Резьбовой фитинг (1 шт.)	R ³ / ₄	DN 20	003Z0233
		R 1	DN 25	003Z0234
		R 1 1/4	DN 32	003Z0235
		R 11/2	DN 40	003Z0273
		R 2	DN 50 (2 1/4")	003Z0274 ²⁾
			DN 50 (2 1/2")	003Z0278 ¹⁾
	Приварной фитинг (1 шт.)	Ду 15	DN 15	003Z0226
		Ду 20	DN 20	003Z0227
_		Ду 25	DN 25	003Z0228
		Ду 32	DN 32	003Z0229
		Ду 40	DN 40	003Z0271
		П. го	DN 50 (2 1/4")	003Z0272 ²⁾
		Ду 50	DN 50 (2 1/2")	003Z0276 ¹⁾


Примечание: ASV-PV Ду 50 (2 ½") и ASV-I/M Ду 50 (2 ½") имеют разные диаметры соединений.

¹⁾ Использовать с клапанами ASV-PV Ду 50

²⁾ Использовать с клапанами ASV-I и ASV-M Ду 50.

Автоматические балансировочные клапаны ASV


Размеры - изоляция

ASV-I/M/P/PV

DN	Α	В	С	D		
DN	mm					
15	61	110	111	37		
20	76	120	136	45		
25	100	135	155	55		
32	118	148	160	70		
40	118	148	180	70		

ASV-BD

DN	Α	В	С			
DN	mm					
15	79	85	122			
20	84	85	122			
25	99	85	122			
32	132	85	185			
40	138	130	185			
50	138	126	185			

Текст заявки на ASV-PV

- 1. Клапан регулятора перепада давления должен быть доступен в диапазоне Ду 10-100.
- 2. Регулирование перепада давления основано на встроенной мембране.
- 3. Диапазон настраиваемого перепада давления должен быть 5-25 кПа или 20-40 кПа при диаметре Ду 15-40 и 20-40 кПа, 35-75 кПа или 60-100 кПа при диаметре Ду 50-100.
- 4. Настройка перепада давления должна выполняться с помощью шестигранного ключа (Ду 15-40) либо муфта должна быть скрыта.
- 5. Настройка перепада давления должна быть линейной (1 оборот 1 кПа или 1 оборот 2 кПа в зависимости от диаметра).
- 6. Диапазон перепада давления должен быть изменяемым путем замены пружины диаметром Ду 15-40 без слива системы.
- 7. Должна быть реализована возможность перекрытия потока с помощью рукоятки.
- 8. Сливной кран должен быть в диапазоне Ду 15-50.
- 9. Диапазон температур должен быть –20 ... +120 °C при Ду 15-40 и –10 ... +120 °C при Ду 50-100.
- 10. Номинальное давление должно составлять 16 бар, а испытательное 25 бар.
- 11. Комплект регулирующего клапана перепада давления в диапазоне Ду 15-40 должен включать в себя импульсную трубку (минимум 1,5 м) и изоляцию клапана из пенополистирола минимум до 80 °C.

Условный диаметр:	
Соединение:	
Диапазон регулировки от - до	кПа
Изготовитель: Тип Danfoss: ASV-PV	
Заказ №: 003L	

ООО "Данфосс"

Главный офис
Россия, 143581, Московская обл.
Истринский р-н,
Павловская Слобода,
Лешково, 217
Тел.: (095) 792 57 57
Факс: (095) 792 57 60
E-mail: info@danfoss.ru
Адрес в интернет:
http://www.danfoss.ru

3АО "Данфосс" Филиал Россия, 197342, г. Санкт-Петербург, ул. Торжковская 5, офис 525 Тел.: (812) 324-40-12, (812) 327-87-88 Факс: (812) 327 87 82 E-mail: pavlov_v@danfoss.ru

ЗАО "Данфосс" Филиал Россия, 344006, г. Ростов-на-Дону, проспект Соколова, 29, офис 7 Тел./Факс: (8632) 92-32-95 E-mail: komarov@danfoss.ru **ЗАО "Данфосс" Филиал** Россия 620014, г. Екатеринбург, ул. Анотона Валека, 15, офис 509 Тел./Факс: (3432) 65 83 96 E-mail: holodov@danfoss.ru

3АО "Данфосс" Филиал Россия 690087 Приморский, край, г. Владивосток, ул. Котельникова 2 Тел./Факс: (4232) 20 45 10 Moб.: 8 (902) 530 87 81 E-mail: yuferov@danfoss.ru

Danfoss не несет ответственности за возможные ошибки в каталогах, брошюрах и других печатных материалах. Danfoss оставляет за собой право вносить изменения в продукцию без предварительного уведомления. Это относится также к уже заказанной продукции, если только вносимые изменения не требуют соответствующей коррекции уже согласованных спецификаций. Все торговые марки в данном документе являются собственностью соответствующих компаний. Название и логотип Danfoss являются собственностью компании Danfoss A/S. Все права защищены.

24 VD.A6.E2.50 Produced by Danfoss A/S ⊗ 06/2013